Acta Crystallographica Section E

Structure Reports

Online

Dicaesium pentacyanotricuprate(I), $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$

Ann M. Chippindale,* Simon J. Hibble, Alexander H. Pohl and Edward J. Bilbé

School of Chemistry, University of Reading, Reading, Berkshire RG6 6AD, England

Correspondence e-mail:
a.m.chippindale@rdg.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.017$
$w R$ factor $=0.020$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] All rights reserved
$\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ has a layered structure consisting of $\left[\mathrm{Cu}_{3}(\mathrm{CN})_{5}\right]^{2-}$ sheets stacked in an $A B A B$ fashion along the c axis, with Cs^{+}cations lying between the sheets. The sheets are generated by linking $-(\mathrm{CuCN})-$ chains, in which the $\mathrm{C} \equiv \mathrm{N}$ groups are ordered, via $\left[\mathrm{Cu}(\mathrm{CN})_{3}\right]^{2-}$ units. The two bridging cyanide groups of each $\left[\mathrm{Cu}(\mathrm{CN})_{3}\right]^{2-}$ unit show partial 'head-to-tail' disorder of C and N , whilst the third $\mathrm{C} \equiv \mathrm{N}$ group is terminal and ordered with C bonded to Cu .

Comment

Copper(I) cyanide frameworks, like those of other transitionmetal cyanides, can be viewed as constructed from $M(\mathrm{CN})_{x}$ structural building blocks. For copper(I), a range of potential building blocks are known, including simple species, such as linear $\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]^{-}$, trigonal $\left[\mathrm{Cu}(\mathrm{CN})_{3}\right]^{2-}$ and tetrahedral $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ units, and larger fragments, such as $-(\mathrm{CuCN})-$ chains. These units have well defined geometries and can be assembled to form new solids by combining with themselves, in association with charge-balancing species where necessary, or with other complex metal ions or organic species, e.g. Lewis bases such as amines, to generate one-, two- and threedimensional frameworks.

Figure 1
A projection of the crystal structure along the c axis, showing layers stacked as $A B A B$ with Cs^{+}cations between the layers. Key: Cu atoms are black, Cs orange, C green, N blue and $Z(\mathrm{C}$ or N of a disordered cyanide group) cyan.

Received 22 May 2006 Accepted 30 May 2006

Figure 2
$\mathrm{A}\left(\mathrm{Cu}(\mathrm{CN})_{8}\right.$ ring from the $\left[\mathrm{Cu}_{3}(\mathrm{CN})_{5}\right]^{2-}$ layer, showing the approximately trigonal-planar coordination of atoms Cu 1 and Cu 2 . The terminal cyanide group $\mathrm{C} 1 \equiv \mathrm{~N} 1$ points into the centre of the ring. Key as given for Fig. 1. Displacement ellipsoids are drawn at the 50% probability level.

The present work is a continuation of our investigations of copper(I) cyanide materials prepared in the presence of alkalimetal cations (Chippindale et al., 2004; Pohl et al., 2006). $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ reported here has the same layer structure as $\mathrm{K}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$, prepared previously in acetonitrile under solvothermal conditions (Pohl et al., 2006).

The layer structure of $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ can be described in terms of $-(\mathrm{Cu} 2 \mathrm{CN})-$ chains running along the b axis and linked through bridging $\left[\mathrm{Cu} 1(\mathrm{CN})_{3}\right]^{2-}$ units to generate a network of $(\mathrm{CuCN})_{8}$ rings within the layers. The layers stack in an $A B A B$ fashion along the c axis (Fig. 1). Cs^{+}cations lie between the layers bonded to 12 cyanide groups, with $\mathrm{Cs}-\mathrm{C} /$ N distances in the range 3.11 (2)-3.58 (3) \AA.

There are two crystallographically distinct Cu atoms, both of which have approximately trigonal-planar coordination (Fig. 2). Atom Cu1, on a special position of site symmetry 2, is bonded to two equivalent bridging cyanide groups, $Z 3 \equiv Z 4$, through the $Z 4$ ends of the groups. The $Z 3 \equiv Z 4$ unit shows partial 'head-to-tail' disorder, as determined by refinement, with $Z 3$ having occupancy 0.78 (4) for C3 and 0.22 (4) for N3 and $Z 4$ having occupancy 0.22 (4) for C 4 and 0.78 (4) for N 4 . The coordination around Cu 1 is completed by a third cyanide group, $\mathrm{C} 1=\mathrm{N} 1$, bonded as a terminal group to Cu 1 through C 1 . Atom Cu 2 , sited on a general position, bonds directly to $\mathrm{C} 2, \mathrm{~N} 2$ and $Z 3$ and is also approximately trigonal planar, although the geometry around Cu 2 is less regular than that found for Cu 1 . The refinement of site occupancies for the cyanide group $\mathrm{C} 2 \equiv \mathrm{~N} 2$ indicates that the C and N atoms are fully ordered. The greater deviation from linearity of the
$\mathrm{Cu} 2-\mathrm{N} 2 \equiv \mathrm{C} 2$ angle compared with the $\mathrm{Cu} 2-\mathrm{C} 2 \equiv \mathrm{~N} 2$ angle in $\mathrm{Cu} 2-\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Cu} 2^{\text {iii }}$ (symmetry code as in Table 1) confirms this assignment: strong $\pi-\pi$ interactions between a metal and the C end of a cyanide usually result in a smaller deviation from linearity of the $M-\mathrm{C}-\mathrm{N}$ angle than the $M^{\prime}-$ $\mathrm{N}-\mathrm{C}$ angle (Vahrenkamp et al., 1997).

Experimental

Crystals of $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ were prepared at $293 \mathrm{~K} . \mathrm{KCN}(1.30 \mathrm{~g}$, $20.0 \mathrm{mmol}), \mathrm{CuCN}(0.46 \mathrm{~g}, 5.1 \mathrm{mmol})$ and $\mathrm{CsNO}_{3}(1.94 \mathrm{~g}, 10.0 \mathrm{mmol})$ were dissolved in deionized water (15 ml) to form a colourless solution. On addition of $1 M \mathrm{H}_{2} \mathrm{SO}_{4}(7.4 \mathrm{ml})$, a white precipitate formed immediately. This was subsequently identified as $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ using powder X-ray diffraction. The precipitate was allowed to stand in the solution at room temperature, and after three weeks colourless rectangular blocks of $\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$ had grown. The crystals were filtered off, washed with water and allowed to dry in the air. A powder X-ray diffraction pattern of the ground crystals confirmed that the product was monophasic. IR data (Nujol mull): $\nu(\mathrm{C} \equiv \mathrm{N})$ $2140(m), 2104(s), 2098(s) \mathrm{cm}^{-1}$.

Crystal data

$\mathrm{Cs}_{2} \mathrm{Cu}_{3}(\mathrm{CN})_{5}$
$M_{r}=586.54$
Monoclinic, $C 2 / c$
$a=17.8156$ (9) £
$b=8.0962$ (15) \AA
$c=8.3890$ (8) \AA
$\beta=91.771(8)^{\circ}$
$V=1209.4(3) \AA^{3}$

Data collection

Oxford Gemini S Ultra	9301 measured reflections
diffractometer	1343 independent reflections
$\omega / 2 \theta$ scans	1123 reflections with $I>3 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.021$
$(A B S P A C K ;$ Oxford Diffraction,	$\theta_{\max }=28.5^{\circ}$
$2006)$	
$T_{\min }=0.21, T_{\max }=0.41$	

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.020$
$S=1.08$
1123 reflections
71 parameters

$$
\begin{aligned}
& Z=4 \\
& D_{x}=3.221 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=11.13 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.24 \times 0.12 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

> 9301 measured reflections 1343 independent reflections 1123 reflections with $I>3 \sigma(I)$ $R_{\text {int }}=0.021$ $\theta_{\max }=28.5^{\circ}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).
Z denotes a disordered cyanide group.

inorganic papers

The orientations of the three distinct $\mathrm{C} \equiv \mathrm{N}$ groups were investigated as follows. Each $\mathrm{C} \equiv \mathrm{N}$ was modelled as $Z x \equiv Z y$ with starting values for the occupancies of both $Z x$ and $Z y$ set to ($0.5 \mathrm{C}+0.5 \mathrm{~N}$). The site occupancies were then refined subject to the constraints that the total occupancy for each site was 1.00 and the displacement parameters of C and N on the same site were equal. Cyanide groups $\mathrm{C} 1 \equiv \mathrm{~N} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2$ were found to be fully ordered and the occupancies of these groups were fixed in subsequent refinements. The occupancies in the remaining bridging $Z 3 \equiv Z 4$ group have refined values for $Z 3$ of 0.78 (4) for C 3 and 0.22 (4) for N 3 , and for $Z 4$ of 0.22 (4) for C4 and 0.78 (4) for N4.

Data collection: CrysAlisPro, (Oxford Diffraction, 2006); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank the EPSRC for grants in support of a single-crystal CCD diffractometer and a Studentship for AHP. AMC thanks the Leverhulme Trust for a Research Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Chippindale, A. M., Hibble, S. J. \& Cowley, A. R. (2004). Inorg. Chem. 44, 8040-8048.
Oxford Diffraction (2006). ABSPACK and CrysAlisPro (Version 171.29.8). Oxford Diffraction Ltd, Abingdon, Oxford, England.
Pohl, A. H., Chippindale, A. M. \& Hibble, S. J. (2006). Solid State Sci. 8, 379387.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 79-82. New York: Springer-Verlag.
Vahrenkamp, H., Geiss, A. \& Richardson, G. N. (1997). J. Chem. Soc. Dalton Trans. pp. 3643-3651.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

[^0]: (C) 2006 International Union of Crystallography

